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NOTE 

A Numerical Method for Systems of Conservation Laws 
Mixed Type Admitting Hyperbolic Flux Splitting* 

1. INTRODUCTION 

The system of conservation laws 

u, + f(u), = 0 

u(x, 0) = u”(x) 
(1.1) 

is hyperbolic if the Jacobian af(u)/du has real eigenvalues 
and a complete set of eigenvectors. Among recent activity 
in designing stable and accurate numerical methods for 
solving systems of hyperbolic conservation laws, the EN0 
(essentially non-oscillatory) high order finite difference 
method, [ 6,7, 16, 171, is quite successful. The philosophy of 
EN0 schemes is to use upwinding and adaptive stencils, 
based on the local “wind” direction (the sign of the relevant 
eigenvalue) and the local smoothness, in each of the local 
characteristic fields. EN0 schemes produce sharp, non- 
oscillatory shock transitions and uniform high order in 
smooth regions, suitable for solving problems with both 
shocks and rich smooth region structures. 

If the Jacobian C? f(u)/8 u in ( 1.1) has complex eigenvalues, 
the system becomes elliptic. Examples of mixed hyper- 
bolic-elliptic systems include equations in fluid dynamics 
[20], elasticity [9], and the partial differential equations 
related to Lorenz systems [8], just to name a few. The solu- 
tion often involves shocks across the elliptic region, also 
known as “phase transitions.” Since there can be more than 
one weak solution, some admissibility criteria are needed, 
with the goal to single out “physically relevant” weak 
solutions, see, e.g., [ll, 12, 3, 18, 19, 9, 4, 14, 15, lo]. 
The analysis usually starts with the Riemann problem, 

u(x, 0) = 
{ 

uL, 
x<o 

(1.2) 
URN x > 0. 

More general initial data is more difficult to analyse 
theoretically. An efficient computational method may be 
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of 

used as a tool to analyse the solutions (e.g., [ 11). From a 
computational point of view, if a shock capturing method, 
such as the EN0 method in [7, 171 is to be used, discon- 
tinuities are typically spread out in two or three points; 
hence points can sit in elliptic regions even if the exact solu- 
tion jumps across it, making it necessary to treat elliptic 
regions carefully in order to avoid numerical instability. 

Previous numerical calculations for mixed type systems 
using first-order monotone schemes can be found in, e.g., 
[ 1, lo]. For a review of numerical methods in applications 
see [ 211. Successful hyperbolic techniques (upwinding in 
the hyperbolic regions, artificial viscosity) are used in 
these references. One of the main ingredients of hyperbolic 
EN0 schemes, and of many other non-oscillatory hyper- 
bolic schemes such as TVD (total-variation-diminishing) 
schemes [S], is the approximation in each of the local 
characteristic fields. If the system becomes elliptic, local 
characteristic decomposition is no longer available. In 
this paper we treat elliptic regions using hyperbolic flux- 
splitting and high order methods. In Section 2 we propose a 
flux splitting f(u) = f+(u) + f-(u), with the corresponding 
Jacobians df* (u)/au having real and positive/negative 
eigenvalues. This is similar to the flux splitting used for 
hyperbolic systems, for example, the Lax-Friedrichs split- 
ting and the van Leer splitting [23], but our generalization 
to elliptic regions of such splitting allows us to handle mixed 
type systems in a unified and heuristically stable (see 
Remark 2.2) fashion. The hyperbolic EN0 operator is 
applied separately on f+(u), and on fp (u),. In this paper 
we use the van der Waals equation in fluid dynamics 

0, + P(W), = 0, w, - v, = 0, 

u(x, 0) = uO(x), w(x, 0) = wO(x), 
(1.3) 

with 

,,w,=~-~, (1.4) 

where R, T, a, b are all positive constants, for our numerical 
examples. See, for example, [20] for details. Equation (1.3) 
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FIG. 1. p(w) = I/(w -0.25) - 0.9/w2. 

corresponds to (1.1) with u= (u, w)‘, f(u)= (p(w), -0)‘. 
The two eigenvalues of the Jacobian df(u)/au are 
&J--p’(w). For an ideal gas, the pressure p(w) is a 
decreasing function of w, resulting in a hyperbolic system 
(1.3). However, during a gas-liquid phase transition, p’(w) 
may become positive within an interval, as in the case (1.4) 
with suitable parameters (Fig. l), making the system (1.3) 
elliptic in this region. In Section 3 we numerically test 
our scheme on (1.3). We observe convergence with good 
resolution to weak solutions for various Riemann problems. 
These weak solutions are then numerically checked to be 
admissible under the viscosityycapillarity criterion [ 181. 
We also compute the solution with smooth periodic initial 
conditions and observe the interesting phenomena of the 
shrinking of elliptic regions if they are present in the initial 
conditions. 

2. THE NUMERICAL SCHEME 

We start with the effort to find a hyperbolic flux splitting 

f(u)=f+(u)+f-(u). (2.1) 

The requirement is that the Jacobian df+ (u)/du has only 
real and positive eigenvalues, and likewise that the Jacobian 
df- (u)/au has only real and negative eigenvalues. If the 
system is hyperbolic, the simplest way to achieve such a 
splitting is due to Lax-Friedrichs, 

f’(u)=;(f(u)*ctu), tL = max I&(u)], (2.2) i. ” 

where Ai are the eigenvalues of the Jacobian df(u)/du. 
For special classes of hyperbolic systems, such as the Euler 
equations of a polytropic gas, more sophiscated splittings 
with better physical meanings are available, e.g., van Leer’s 

splitting [23]. For an elliptic system, the simple splitting 
(2.2) no longer works. In fact, any splitting with the 
Jacobians af’(u)/du and i?f-(u)/du commuting with each 
other, as is the case in (2.2), will probably fail, because 
commuting matrices with distinct eigenvalues can be 
simultaneously diagonalized; hence the eigenvalues of their 
sum are simply the sum of their corresponding eigenvalues. 
However, a splitting similar to (2.2) with the scalar tl 
replaced by a diagonal matrix: 

can usually yield the required result. For example, the flux 
f(u) in the van der Waals equation (1.3) can be split success- 
fully using (2.3) with 

af2-4p’(w)-M 

2 
’ (2.4) 

LY.,=cr,+M 

and 

a > 2. (2.5) 

The idea is to make an ansatz g(u) = M(v, O)T, then try to 
find the smallest possible M such that the Jacobians 
d(f(u) + g(u))/du both have real and distinct eigenvalues. 
This leads to A4 given by (2.5). Once this is done, it is easy 
to use the Lax-Friedrichs idea, i.e., to add and substract clu 
with a suitable CI, to accomplish the splitting. Similar split- 
ting exists for the PDE related to the Lorenz system [S]. In 
fact, it is easy to prove that this approach works for all 2 x 2 
and at least some higher order systems. 

Equipped with the splitting (2.1), one can then apply any 
successful hyperbolic approximation techniques separately 
to f+(u) and f-(u). The only exception is that characteristic 
decompositions should not be performed in elliptic regions, 
since the characteristic directions of df+ (u)/du and 
df-(u)/du do not have any physical meaning. In this paper 
we apply the third order in space and time (fourth order in 
smooth monotone regions) EN0 techniques developed in 
[ 16, 173 to f+(u) and f-(u). See [16, 171 for details. 

Remark 2.1. Since the schemes we use are conservative, 
any converged solution will be a weak solution of ( 1.1). It is 
more difficult to show that the limit solutions satisfy various 
admissibility conditions. If we take the first-order EN0 and 
use the splitting (2.1)(2.2) for a hyperbolic system, we 
recover the classical Lax-Friedrichs scheme. It is well 
known that the Lax-Friedrichs scheme can be rewritten as 
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a centered scheme plus a dissipation term approximately 
equal to $f~ dx u,,. If we still take the first-order EN0 but 
use the splitting of the form (2.3) for a mixed type system, 
we obtain a centered scheme plus a dissipation term 
approximately equal to $o[ Ax II,,, where Cc is the positive 
diagonal matrix (2.3). It is then reasonable, cf. [ 11, 193, 
to expect that the scheme converges to weak solutions 
satisfying viscosity type admissibility conditions. Ample 
numerical, tests should be performed to assess the con- 
vergence and admissability for higher order schemes. The 
numerical examples in Section 3 are preliminary results in 
this direction. 

Remark 2.2. If some fractional step method (e.g., 
Strang [22]) is used on the splitting (2.1), we end up with 
a scheme of the form 

U “+‘=(I+AtL+)(I+AtL-)u”, (2.6) 

where L * are hyperbolic operators approximating f * (u), 
(for the next time step the two operators may reverse order). 
It is easy to choose stable operators (I + At L * ), due to the 
hyperbolicity of f’(u) in (2.1). However, this does not 
necessarily mean that the scheme (2.6) is stable, since 
(I + At L * ) may not commute with each other and may not 
be simultaneously diagonalizable. If the operators satisfy 
the more restrictive condition 

III+ At L+ II < 1 + O(Ar), 
(2.7) 

(II + At L- II Q 1 + O(At) 

for any consistent norm, the fractional step scheme (2.6) will 
be stable. 

3. NUMERICAL EXAMPLES 

We use the van der Waals equation (1.3)-(1.4) with 
RT = 1, a = 0.9, and b = 0.25. The graph of the correspond- 
ing p(w) is in Fig. 1. The system is elliptic for a < w < jl, 
where a = 0.574912 and /I = 1.036251. The so-called 
Maxwell line BF in Fig. 1, where the two shaded areas are 
equal, intersects the curve of p(w) at w = m = 0.494273 and 
w = M= 1.405065. The horizontal lines AD and CF in 
Fig. 1 yield y = 0.483100 and 6 = 1.918618. 

We use the third-order EN0 scheme which is fourth 
order in smooth monotone regions. If the computational 
cell is contained completely inside one of the hyperbolic 
regions w Q a or w 2 fi, we use characteristic decomposi- 
tions (the ENO-LF algorithm described in [16, 173). 
Otherwise a component by component EN0 approxima- 
tion is used for computing. the numerical flux. The splitting 
used is (2.3k(2.5) with a = 2.2. The time step At is restricted 

by a CFL number 0.6; i.e., At <0.6(p(df+(u)/du)+ 
p(8fp(u)/i3u)) Ax, where p(A) is the spectral radius of A. 

All the computations are performed by using a sequence 
of refined meshes to verify convergence, although we typi- 
cally only show the graphs for one or two fixed meshes. Dif- 
ferent splittings obtained by varying a in (2.5) or by making 
another ansatz g(u) = M(0, u)’ (see the line after (2.5)) are 
also tested. We observe no significant difference for third- 
order EN0 although the first-order scheme shows more 
sensitivity to different splitting, such as different smearing. 
This is consistent with our experience in hyperbolic calcula- 
tions, that the difference due to different building blocks 
(splitting) diminishes as the order of the scheme increases, 
provided that the building blocks have adequate viscosity. 
We have also made comparisons between first-order and 
third-order schemes. They converge to the same solution 
but the first-order scheme takes at least three to four times 
more points to get the same resolution of shocks as the 
third-order EN0 does. This would be more apparent if the 
solution contained some structure in smooth regions. We 
omit the graphs for these comparisons. 

We first compute several Riemann problems (1.2). 
Boundary points are in the hyperbolic regions and the usual 
characteristic boundary conditions are used: 

(1) (UL7 w,)= (1, m), (u,, w,)= (1, M), where m 
and A4 are the Maxwell values defined above. This initial 
condition satisfies the Rankine-Hugoniot condition for a 
stationary jump. Physical principles (Maxwell equal area 
rule) and many admissibility criteria (e.g., the viscosity- 
capillarity criterion in [lS]) indicate that this is an 
admissible jump. Our numerical result shows a stable, sharp 
jump for this case, Fig. 2. We remark that here and in what 
follows, the numerical solution usually has one or two 
transition points in the elliptic region for the phase jump. 

1.2 ~ 

1.0 - 

0.8 - --------------I ; 
i 

0.6_ D____ ~-----~--- + 

II 3 II, 1 ,I, / 11, I 111,11- 
-4 -2 0 2 4 

FIG. 2. Maxwell solution, (uL. wL) = (1, m), (vR. wR) = (1, M), t = 25. 
Two hundred points (+) and the exact solution (solid line). Here and in 
what follows, the region between the two dashed lines is elliptic. 
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Apparently they have not caused any instability to the 
computation. 

(2) (UL, WL) = (1, 0.54), CUR, wR) = (1, 1.8517). This 
initial condition also satisfies the Rankine-Hugoniot condi- 
tion for a stationary jump, but physical principles and many 
admissibility criteria (e.g., the viscosity-capillarity criterion 
in [lS], see also [ 141) indicate that this is not an admissible 
jump. Our numerical result shows the evolution of this 
jump into a more complicated structure of jumps, Fig. 3a, 
apparently due to the inherent numerical viscosity of the 
scheme (see Remark 2.1). The solution exhibits oscillatory 
behaviors near the phase boundary, Fig. 3a. This is unplea- 
sant but not surprising, since we used component by com- 
ponent approximations in cells involving elliptic regions; 
hence during the process of one wave splitting into two or 
more waves, one or more of them being hyperbolic, oscilla- 
tions occur as a failure of recognition of the corresponding 
characteristic fields. Similar oscillations also appear 

a 
-- 

for hyperbolic systems if a component by component 
approximation is used (see, e.g., [2]). The oscillations 
become smaller (hence they are not Gibbs oscillations) and 
more confined when the number of grids is increased 
(Fig. 3b), indicating the convergence of the scheme. Also, 
these oscillations are more apparent for slow moving shocks 
(see [ 13]), if we compare Fig. 3a and 4a. 

The solid line in Fig. 3a is computed by the same scheme 
with 2000 points. It agrees with the result with 4000 points; 
hence it can be considered as a converged solution. In order 
to check whether this weak solution is admissible under the 
viscositycapillarity criterion [18], i.e., whether it is the 
bounded a.e. limit of u” = (u”, w’), satisfying 

0:: + P(W”), = wx, - ~*~%,, 
WE--V& =() f x 

v&(x, 0) = uO(x), w&(x, 0) = wO(x) 

(3.1) 

bl”“I”“I”“I”“I”“l”“J 

t,, 
~6 -4 -2 0 2 4 

I III I II’1 I’, I I I,, #II 
6 -4 -2 0 2 4 

FIG. 3. (uL, wL) = (1,0.54), (uR, IV,) = (1, 1X517), t = 4. (a) 200 points (+) and 2000 points (solid line); (b) 2000 points; (c) centered solutions of 
(3.1) with E =O.l, O.Ol,O.OOl, and EN0 solution for (1.3). 

581/100/2-15 
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FIG. 4. (uL, wL) = (1,0.45), (us, WR) = (2,1.5), r = 1.5. (a) 200 points (+) and 2000 points (solid line); (b) centered solutions of (3.1) with E = 0.1, 
0.01, 0.001, and EN0 solution for (1.3). 

as s+O+, 0 < A d a, we plot in Fig. 3c the numerical solu- 
tions of (3.1), for A = a, with .s=O.l, 0.01, 0.001, and the 
solution of our scheme for (1.3). The solutions to (3.1) are 
computed by the standard fourth-order centered scheme 
with the classical fourth-order Runge-Kutta time dis- 
cretization. We verify adequate resolution for the solution of 
(3.1) for each fixed E by repeatedly refining the mesh until 
the solutions do not change to visual inspection (the largest 
number of grid points used is 8000). Clearly we can see 
the convergence of the solutions of (3.1) to our solution 
when s-+0+ in Fig. 3c. We remark here that the 
viscosity-capillarity criterion (3.1) may depend on the 
capillarity coefficient A [ 181. We have not performed exten- 
sive numerical study to assess this dependency. 

(3) (UL, WL) = (1,0.45), (u,, wR) = (2, 1.5). This case is 
somewhat easier to compute than the previous case, since 
the initial condition is not a steady nonadmissible weak 

1.5 - 

0.0 h ’ ’ ’ I ‘--- 
-2 0 2 

FIG. 5. (u’(x), w’(x)) = (1 - 0.5 cos(x), 0.8 + 0.2 sin(x)). 400 grid 
points. t = 0,0.2,0.4,0.6,0.8, 1, 1.2, 1.4, 1.6, 1.8,2. 

solution. Figure 4a shows the result with 200 grid points on 
a solid-line background of a converged solution with 2000 
grid points. Figure 4b shows the convergence as E -+ Of of 
the solutions of the viscosity-capillarity equation (3.1) with 
A = + to our solution. 

We then compute the solutions for smooth initial condi- 
tions: (1) (u’(x), w”(x)) = (1 - 0.5 cos(x), 1 + 0.5 sin(x)) 
(it crosses the elliptic regions) and (2) (u’(x), w’(x)) = 
(1 - 0.5 cos(x), 0.8 + 0.2 sin(x)) (it is contained entirely 
inside the elliptic region). Periodic boundary condition is 
used. The solutions gradually evolve into piecewise smooth 
solutions contained entirely inside one of the two hyperbolic 
regions w d c1 and w 3 /?, connected by jumps over the ellip- 
tic regions (phase transitions). This seems to agree with the 
physical intuition. We show the result of (2) in Fig. 5 
and omit the graph for (1) which is similar. A numerical 
vanishing viscosity study (3.1) would be very expensive. 
Also, for general initial conditions, very little is known 
about the existence or uniqueness of the limit e + 0 + of 
(3.1). Notice that during the evolution oscillations are 
generated inside the elliptic regions (Fig. 5) presumably 
due to the inherent instability of the equation in those 
regions. These oscillations fade out once the solution 
evolves into the hyperbolic regions. 
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